ON THE QUANTITATIVE RELATIONS BETWEEN STRUCTURE AND ANTIAGGREGATION ACTIVITY OF ω-ARYL- ω --OXOALKANIC ACIDS

Miroslav Kuchařa ${ }^{a}$, Bohumila Brůnováa, Jaroslava Grimováa ${ }^{a}$, Václav Rejholec ${ }^{a}$ and Václav Čepelák ${ }^{b}$
${ }^{a}$ Research Institute for Pharmacy and Biochemistry, 13000 Prague 3 and
${ }^{h}$ Medical Faculty, Charles University, Plzeñ

Received October 10th, 1985

Abstract

A series of ω-aryl- ω-oxoalkanoic acids, $I-I V$, has been prepared and investigated for dissociation constants in 80% methylcellosolve, retention characteristics in thin-layer partition chromatography and partition coefficients P in the system octanol-water. Also evaluated were their anti--inflammatory efficacy and inhibitory effect on the platelet aggregation induced by collagen. Analysing the relations between structure and antiagregation effect, we obtained a non-linear, quadratic dependence of this effect on lipophilicity, the optimum being at $\log P=3$. The antiaggregation effect increased with shortening the chain between the carbonyl and the carboxyl, and with increasing acidity. It was also diminished by the presence of a methyl group on the interlinking chain. To assess the role of lipophilicity we used the R_{M} values of partition chromatography. The relation between anti-inflammatory efficacy and structure was assessed only qualitatively. In this aspect, too, the nature of the chain between the carbonyl and carboxyl proved to have a marked influence. The anti-inflammatory activity proved considerably enhanced by the presence of another aromatic ring in ω-oxoalkanoic acids derived from biphenyl.

The high anti-inflammatory efficacy of 4-biphenylyl-4-oxobutanoic acid ${ }^{1.2}$ (Cinopal) spurred us to synthetize its derivatives. We have prepared a series of ω-aryloxoalkanoic acids, $I-I V$, with substituents not only on the aromatic ring, but also on the chain interlinking the carboxyl and the carbonyl groups. We have determined their anti-inflammatory action in two experimental models of inflammation and discuss how structural alterations affect this action. Since a number of anti-inflammatory drugs had been shown ${ }^{3-5}$ to inhibit collagen-induced aggregation of thrombocytes, we also tested the acids prepared for the antiaggregation activity. Employing regression analysis we searched for relations between this activity and structure. We had previously correlated ${ }^{6,7}$ the antiaggregation activity with the physico--chemical properties of a group of arylalkanoic acids V (wherein R was a hydrogen atom or a lower alkyl group). We had arrived at the equation:

$$
\begin{gather*}
\log \left(1 / C^{\mathbf{A}}\right)=7.687 \log P-0.947(\log P)^{2}+0.590 I_{\mathrm{H}}+0.835 E_{\mathrm{S}}-12.524, \\
n=19, r=0.949, s=0.272, \mathrm{~F}=31.5, \tag{1}
\end{gather*}
$$

wherein I_{H} denotes the indicator variable, corresponding to the number of hydrogen atoms on C_{α} of the alkyl R, and E_{S} the Taft steric constant of this alkyl.

$$
\begin{array}{ll}
I, \mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} & \text { II, } \mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \\
\text { II, } \left.\mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) & \mathrm{N}, \mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}
\end{array}
$$

$$
v
$$

VI

VII

vIII

The acids $I-I V$ were obtained by the Friedel-Crafts reaction of anhydrides of dicarboxylic acids $V I$ with suitable derivatives of benzene ${ }^{8,9}$. Isopropoxy derivatives $I d, I e, I I b$, and $I V b$ were prepared by O -alkylation, with isopropyl bromide in dimethyl sulphoxide, of methyl esters of the corresponding hydroxy acids VIII, followed by hydrolysis.

EXPERIMENTAL

Methods

${ }^{1} \mathrm{H}$ NMR spectra of acids $I-I V$ and esters of hydroxy acids VIII were measured in 6% solutions in deuterochloroform, with tetramethylsilane as internal standard, employing a spectrometer BS $487 \mathrm{~s}-80 \mathrm{MHz}$ (Tesla, Czechoslovakia). With all the compounds the spectra were consistent with the structures assumed. Purity of anhydrides VI and esters VIII was tested by gas chromatography in an apparatus Fractometer F-7 (Perkin-Elmer), using a stainless-steel column (i.d. 3 mm , length 2 m) packed with Gas Chrom Q, mesh $100 / 120$, moistened with 15% OV-17 or, in the case of esters VIII, with $3 \% \mathrm{OV}-17$.

The partition coefficients of selected acids $I-I V$ were determined by a "shake-flask" technique ${ }^{10}$ in the system octanol-aqueous acetate buffer ($\mathrm{pH} 3 \cdot 5$). Concentrations of the acids were measured spectrophotometrically in either phase with a spectrophotometer Unicam SP 8000; the partition coefficients were calculated as ratios of concentrations in the octanol and the aqueous phases: $P=C_{0} / C_{\mathrm{W}}$. The experimental data are in good agreement with the values of $\log P$ calculated by the fragment method ${ }^{11}$. Chromatographic properties of the acids $I-I V$ were determined using a thin layer of silanized silica gel (Kieselgel $60, \mathrm{~F}_{254}$ silanisiert, Merck, F.R.G.), impregnated with a silicone oil (Lukoil 100, VCHZ Kolin, Czechoslovakia). The mobile phase was a mixture of acetone and a citrate buffer, $\mathrm{pH} 3 \cdot 4$, in a ratio of $1: 1$ (ref. ${ }^{12}$). Logarithms of partition coefficients of the acids $I-I V$, whose partition coefficients were not determined experimentally, were calculted from the equation $\log P=\log P_{\mathbf{H}}+\Sigma \pi$, wherein P_{H} denotes the partition coefficient of the corresponding non-substituted acid and $\Sigma \pi$ the sum of lipophilicity
parameters π of the substituents on the aromatic ring, calculated for benzoic acids. These values of $\log P$ accord with the lipophilicity determined chromatographically ${ }^{12,13}$, as is apparent from the relation between P and R_{M} expressed by equation $\left(^{2}\right.$). This equation does not cover the 4--phenyl derivatives $I g, I I c, I I I d, I V c$, whose $\log P^{\prime}$ s are significantly higher than would correspond to the values of R_{M}.

	n	r	s	F
$\log P=2.715 R_{\mathrm{M}}+2.127$	22	0.994	0.105	1678.6

The $\mathrm{p} K$'s of selected acids were determined in 80% methylcellosolve at $25^{\circ} \mathrm{C}$, employing a potentiometer Titrigraph Radiometer SBR-2c (Copenhagen, Denmark); they are:

$I b$	$I f$	$I g$	$I k$	$I I C$	$I I I c$	IIId	$I V C$
6.32	6.33	6.33	6.27	6.60	6.48	6.46	6.76

As can be seen from these data, acidity of these acids is just slightly affected by substituents on the aromatic ring, but modification of the interlinking chain Y has a marked effect on $p K$. In the regression analysis we used the following values of $\Delta \mathrm{pK}$: zero for acids $I, 0.27$ for $I I, 0.13$ for III and 0.43 for $I V$, derived from the corresponding 4 -phenyl derivatives $I g, I I c, I I I d, I V c$,

The regression coefficients in the correlation equations were calculated from experimental data by repeated regression analysis. Statistical significance of the equations was evaluated by the correlation coefficient r, root-mean-square deviation s, and the Fischer-Snedecor criterion F. The individual parameters in the multi-parameter equations were evaluated by the Student t-test on a statistical significance level of $\alpha \leqq 0.005$.

Inhibition of aggregation of thrombocytes was followed by Born's method ${ }^{14}$, as modified by Čepelák ${ }^{15}$. The efficacy was expressed by concentration C^{A}, causing 50% inhibition of the collagen-induced aggregation (maximum slope). To compare the individual acids, we used a reference inhibitor (2-(4-isobutylphenyl)propionic acid, ibuprofen), to the inhibitory concentration of which the efficacy of the other compounds is referred.

The anti-inflammatory efficacy was tested on two experimental models of inflammation. Inhibition of the oedema induced by the Freund adjuvans was assessed according to Pearson and Wood ${ }^{16}$, inhibition of the kaolin-induced oedema according to Hillebrecht ${ }^{17}$; the experimental techniques are described elsewhere ${ }^{18,19}$. The efficacy of a compound was expressed as $\%$ of inhibition of an inflammation related to a group of untreated rats as controls, and the activity indices I^{F} and $I^{\mathbf{K}}$ were calculated as efficacy ratios of the compound tested and the standard, viz. 2-(4'-isobutylphenyl)propionic acid (ibuprofen).

Anhydrides VI

Glutaric anhydride was obtained adhering to a described procedure ${ }^{20}$, in a yield of 89%; b.p. $130-131^{\circ} \mathrm{C} / 0.4 \mathrm{kPa}$ (reported ${ }^{20}$ b.p. $150^{\circ} \mathrm{C} / 1.3 \mathrm{kPa}$). Methylsuccinic anhydride was prepared analogously ${ }^{20}$, yield 86%, b.p. $100-102^{\circ} \mathrm{C} / 0.4 \mathrm{kPa}$. For $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} 128 \cdot 1$ calculated: $52 \cdot 63 \% \mathrm{C}$, $5.30 \% \mathrm{H}$; found: $52.68 \% \mathrm{C}, 5 \cdot 17 \% \mathrm{H}$. Methylsuccinic acid was prepared according to ref. ${ }^{21}$, yield 50%. 3-Methylglutaric anhydride was prepared ${ }^{22}$ in a yield of 57%, b.p. $109-11^{\circ} \mathrm{C} / 0 \cdot 13 \mathrm{kPa}$ (ref. ${ }^{22}$ b.p. $118-122^{\circ} \mathrm{C} / 0.5 \mathrm{kPa}$).
ω-Aryl- ω-oxoalkanoic Acids $I-I V$
Procedure A: anhydride $V I(0.188 \mathrm{~mol})$ and aluminium chloride $(33.2 \mathrm{~g}, 0.25 \mathrm{~mol})$ were dissolved in a suitable solvent (200 ml , Table IL). A solution of a substituted benzene was added
under stirring and cooling, keeping the temperature to $\leqq 20^{\circ} \mathrm{C}$. After stirring for 3 more h at $20^{\circ} \mathrm{C}$ and 1 h at $45^{\circ} \mathrm{C}$ the mixture was poured into ice (500 g) and conc. hydrochloric acid (250 ml). The precipitate was collected on a filter. The organic phase of the filtrate was washed with 5% sodium hydroxide ($3 \times 100 \mathrm{ml}$). The precipitate that had been filtered off was dissolved in the combined alkaline extracts and the turbid solution was filtered with activated carbon. The filtrate was acidified with 50% sulphuric acid and the crude product was crystallized from a suitable solvent.

Procedure B: a mixture of 4-methoxy- or 3-chloro-4-methoxyphenyloxoalkanoic acid (0.2 mol) and 50% hydrobromic acid (140 ml) was boiled $16 \mathrm{~h}, 20 \mathrm{ml}$ portions of 50% hydrobromic acid being added after 4,8 , and 12 h . The mixture was then chilled to $-5^{\circ} \mathrm{C}$. The precipitate of the crude acid VII was collected on a filter and heated 5 h in boiling methanol (150 ml) containing p-toluenesulphonic acid $(2.0 \mathrm{~g})$. The methanol was distilled off and the residue was extracted with ether. The extract was washed with water and dried with magnesium sulphate. The ether was removed and the crude product was purified by crystallization or by column chromatography on silica gel (Table II) and identified by ${ }^{1} \mathrm{H}$ NMR spectra.

To a solution of sodium (1.0 g) in methanol (40 ml) a solution of ester VIII (0.035 mol) in methanol (50 ml) was added and after stirring for 10 min ., the mixture was taken to dryness. The residue was dissolved in dimethyl sulphoxide (50 ml), an aikyl bromide (0.0525 mol) was added and the mixture was heated to $100^{\circ} \mathrm{C}$ for 8 h . After cooling the turbid solution was poured into water (250 ml) and the separated oil was taken into ether. The solution was washed with 5% sodium hydroxide (50 ml) and water (50 ml), and dried with magnesium sulphate. The ether was removed and the crude ester was boiled for 6 h in a solution of potassium hydroxide (10 g), water (10 ml), and methanol (70 ml). The methanol was removed, the residue was dissolved in water (100 ml) and filtered with activated carbon. The filtrate was brought to pH 1 with 50% sulphuric acid and the product was purified by crystallization (Table I).

RESULTS AND DISCUSSION

Evaluation of the antiaggregation activity of acids $I-I V$ is summed up in Table III. Multiple regression analysis afforded the following two, statistically equivalent equations:

$$
\begin{gather*}
\log \left(1 / C^{\mathrm{A}}\right)=0.869(\pm 0.372) \log P-0.144(\pm 0.057)(\log P)^{2}+ \\
+0.330(\pm 0.101) I_{\mathrm{L}}+0.145(\pm 0.081) E_{\mathrm{S}}+0.652(\pm 0.465) \tag{3}\\
n=22, r=0.973, s=0.064, \mathrm{~F}=75.3, \log P_{\mathrm{opt}}=3.02 \\
\log \left(1 / C^{\mathrm{A}}\right)=0.863(\pm 0.341) \log P-0.143(\pm 0.057)(\log P)^{2}+ \\
+0.420(\pm 0.118) I_{\mathrm{L}}-0.632(\pm 0.351) \Delta \mathrm{p} K+0.656(\pm 0.511) \tag{4}\\
n=22, r=0.972, s=0.065, \mathrm{~F}=73 \cdot 1, \log P_{\mathrm{opt}}=3.02
\end{gather*}
$$

The non-linear dependence of antiaggregation efficacy on lipophilicity, approximated by a parabola, is in aggreement with an analogous relation for a series of alkyl-substituted arylaliphatic acids (Eq. (1)). An obvious difference is in the optimum value of lipophilicity, since in the group of arylaliphatic acids the optimum is shifted to

Table I
Characterization of ω-aryl- ω-oxoalkanoic acids $I-I V^{\prime}$

$\begin{gathered} \text { Compound } \\ \mathrm{X} \end{gathered}$	Procedure/ Solvent ${ }^{a}$ Yield, \%	$\begin{gathered} \text { M.p., }{ }^{\circ} \mathrm{C} \\ \text { (Solvent }{ }^{b} \text {) } \end{gathered}$	Formula(M.w.)	Calculated/found	
				\% C	$\% \mathrm{H}$
Ia	I/DC	$113^{\text {c }}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$	67.60	$5 \cdot 70$
H	79	(M-W 2: 1)	(178.2)	$67 \cdot 40$	$5 \cdot 66$
Ib	I/NB	144-145 ${ }^{\text {d }}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$	63.61	$5 \cdot 68$
$4-\mathrm{CH}_{3} \mathrm{O}$	59	(M)	(208.2)	63.45	5.81
Ic	I/NB	186-188	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{4}$	$54 \cdot 55$	$4.58{ }^{e}$
$3-\mathrm{Cl}-4-\mathrm{CH}_{3} \mathrm{O}$	79	(M)	(242.7)	54.44	$4 \cdot 57$
Id	II	112	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$	$66 \cdot 51$	6.84
$4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$	78	($\mathrm{H}-\mathrm{B} 2: 1$)	(236.3)	66.08	$6 \cdot 83$
Ie	II	116-118	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClO}_{4}$	57.54	$5 \cdot 57$ f
$3-\mathrm{Cl}-4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$	48	(M-W 2: 1)	(270.7)	57.67	$5 \cdot 59$
If	I/DS	99-101	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$	72.06	7.60
$4-\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{9}$	60	(M-W 2: 1)	(234.2)	71.76	$7 \cdot 74$
Ig	I/DC	183-184 ${ }^{9}$	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$	$75 \cdot 25$	5.55
$4-\mathrm{C}_{6} \mathrm{H}_{5}$	46	(E)	(254.2)	$75 \cdot 57$	5.77
Ih	1/DC	$134-136^{h}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$	$74 \cdot 11$	$7 \cdot 76$
$4-\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	65	(M-W 2: 1)	(260.3)	$73 \cdot 82$	$7 \cdot 74$
Ii	III ${ }^{\text {i }}$	$155-156^{k}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClO}_{4}$	$65 \cdot 44$	$6 \cdot 55^{l}$
3-Cl-4-c-C6 H_{11}	52	(A)	(294.8)	$65 \cdot 19$	$6 \cdot 50$
IIa	I/B	136-138	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$	$68 \cdot 82$	6.63
H	68	(A)	(192.2)	68.73	$6 \cdot 29$
IIb	II	106-108	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$	67.45	7.32
$4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$	44	(H-B 3:1)	(250.3)	$67 \cdot 18$	7.25
IIC	I/DC	213-214	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$	$76 \cdot 32$	6.00
$4-\mathrm{C}_{6} \mathrm{H}_{5}$	83	(A)	(268.3)	$76 \cdot 10$	6.01
IId	I/DC	130-131	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$	74.39	7.97
4-c- $\mathrm{C}_{6} \mathrm{H}_{11}$	71	(M-W 3:1)	(274.3)	$74 \cdot 40$	$8 \cdot 00$
IIIa	1/NB	160-162	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClO}_{4}$	$56 \cdot 15$	$5 \cdot 11^{m}$
$3-\mathrm{Cl}-4-\mathrm{CH}_{3} \mathrm{O}$	43	(M)	(256.7)	$56 \cdot 32$	$5 \cdot 07$
IIIb	I/DC	79-81	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$	71.77	$7 \cdot 74$
$4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	33	($\mathrm{H}-\mathrm{B} 3: 1$)	(234.3)	71.64	$7 \cdot 86$
IIIC	I/DC	106-108	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$	72.55	$8 \cdot 12$
$4-\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{9}$	32	(H-B 5:1)	(248.3)	$72 \cdot 52$	$8 \cdot 35$
IIId	1/DC	157-158	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$	$76 \cdot 10$	6.01
$4-\mathrm{C}_{6} \mathrm{H}_{5}$	38	(E)	(268.3)	$76 \cdot 36$	6.07

Table I
(Continued)

Compound X	Procedure/ Solvent ${ }^{a}$ Yield, \%	$\begin{aligned} & \text { M.p. },{ }^{\circ} \mathrm{C} \\ & \text { (Solvent }{ }^{b} \text {) } \end{aligned}$	Formula (M.w.)	Calculated/found	
				$\% \mathrm{C}$	$\% \mathrm{H}$
IIIe	I/DC	158-160	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$	$74 \cdot 42$	8.08
4-c- $\mathrm{C}_{6} \mathrm{H}_{11}$	43	(A)	(274.3)	$74 \cdot 64$	$8 \cdot 21$
IVa	I/NB	129-132	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClO}_{4}$	$57 \cdot 67$	$5 \cdot 58^{n}$
$3-\mathrm{Cl}-4-\mathrm{CH}_{3} \mathrm{O}$	52	(A)	(270.1)	57.96	$5 \cdot 57$
IVb	II	78-79	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}_{4}$	$60 \cdot 30$	6.41°
$3-\mathrm{Cl}-4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$	50	(M-W 2: 1)	(298.8)	60.02	$6 \cdot 53$
IVC	1/DC	122-124	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$	$76 \cdot 57$	6.43
$4-\mathrm{C}_{6} \mathrm{H}_{5}$	61	(E)	(282.3)	$76 \cdot 56$	$6 \cdot 34$
IVd	I/DC	111-112	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$	74.97	$8 \cdot 39$
4-c- $\mathrm{C}_{6} \mathrm{H}_{11}$	46	(A)	(288.4)	$74 \cdot 84$	$8 \cdot 57$

${ }^{a}$ In procedure A the reaction medium was nitrobenzene (NB), 1,2-dichloroethane (DC) or benzene (B); ${ }^{b}$ crystallized from: M methanol, W water, H n-hexane, B benzene, E ethanol, A acetic acid; ${ }^{c}$ reported ${ }^{23} \mathrm{~m}$. p. $114-115^{\circ} \mathrm{C}$; ${ }^{d}$ rep. ${ }^{24}$ m.p. $145.146^{\circ} \mathrm{C}$; ${ }^{\boldsymbol{e}}$ for Cl calculated 14.76%, found $14.61 ;{ }^{f}$ for Cl calculated 13.59%, found $13 \cdot 10 \%$, g rep. ${ }^{6}$ m.p. $185-187^{\circ} \mathrm{C} ;{ }^{h}$ rep. ${ }^{25}$ m.p. $160-161^{\circ} \mathrm{C}$; ${ }^{i}$ the acid $I i$ was prepared by chlorination of acid $I h$ (ref. ${ }^{25}$); ${ }^{k}$ rep. ${ }^{25}$ m.p. $160-161^{\circ} \mathrm{C}$; ${ }^{l}$ for Cl calculated 11.75%, found 12.03%; ${ }^{m}$ for Cl calculated 13.81%, found 13.80%; n for Cl calculated $13 \cdot 10 \%$, found $13.09 \% ;{ }^{\circ}$ for Cl calculated and found 11.87 .

Table II
Isolation of esters VIII

Compound	X	Y	Isolation	M.p., ${ }^{\circ} \mathrm{C}$	$\mathrm{Yield}^{a}, \%$
VIIIa	H	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$\mathrm{M}-\mathrm{W} 2: 1^{b}$	$114-117$	30
VIIIb	Cl	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	M-W 2: 1^{b}	$44-47$	34
VIIIc	H	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	$\mathrm{B}-\mathrm{E} 3: 1^{c}$	$140-143$	27
VIIId	Cl	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	$\mathrm{~B}-\mathrm{E} \mathrm{10:1}$		

[^0]Table III
Biological activity of aryloxoalkanoic acids $I-I V$

Compound	$\log P^{a}$	$R_{\text {M }}{ }^{\text {b }}$	$\begin{gathered} C_{\mathrm{exp}}^{\mathrm{A}} \\ \mathrm{moll}^{-1} \cdot 10^{3} \end{gathered}$	$\log \left(1 / C^{\text {A }}\right)_{\text {exp }}$	$\log \left(1 / C^{\text {A }}\right)_{\text {calc }}{ }^{c}$	$\frac{\text { Anti-infla }}{I^{\mathrm{F}}}$	$\frac{\text { efficacy }^{d}}{I^{K}}$
Ia	$1 \cdot 30^{+}$	-0.28	$4 \cdot 21$	$2 \cdot 376$	$2 \cdot 379$	N	0.40
Ib	$1 \cdot 38{ }^{+}$	-0.28	$2 \cdot 88$	$2 \cdot 541$	$2 \cdot 418$	N	N
Ic	1.98	-0.055	$2 \cdot 50$	$2 \cdot 602$	$2 \cdot 649$	NE	0.33
Id	$2 \cdot 18$	0.02	$2 \cdot 29$	$2 \cdot 640$	$2 \cdot 704$	$0 \cdot 54$	$0 \cdot 69$
Ie	$2 \cdot 78$	0.24	1.64	$2 \cdot 785$	$2 \cdot 797$	0.65	0.51
If	$3 \cdot 20$	0.35	$1 \cdot 46$	$2 \cdot 836$	$2 \cdot 801$	$0 \cdot 64$	$0 \cdot 34$
$I g$	$3 \cdot 20^{+}$	0.21	1.66	2.780	$2 \cdot 801$	1.18	1.02
Ih	$3 \cdot 76$	0.585	1.68	2.775	$2 \cdot 728$	$0 \cdot 79$	0.65
Ii	$4 \cdot 36$	0.79	$3 \cdot 16$	$2 \cdot 500$	$2 \cdot 549$	$1 \cdot 20$	0.80
IIa	$1 \cdot 62^{+}$	-0.155	$5 \cdot 75$	$2 \cdot 240$	$2 \cdot 343$	N	0.43
IIb	$2 \cdot 50$	$0 \cdot 19$	$2 \cdot 00$	$2 \cdot 699$	$2 \cdot 587$	NE	NE
IIC	$3 \cdot 40^{+}$	$0 \cdot 37$	$2 \cdot 30$	$2 \cdot 638$	$2 \cdot 606$	$1 \cdot 39$	0.98
IId	4.08	0.72	3.83	$2 \cdot 417$	2.466	1.06	0.52
IIIa	$2 \cdot 17^{+}$	0.03	0.98	3.009	3.031	N	N
IIIb	$2 \cdot 89$	0.28	0.68	3.167	3.134	0.70	N
IIIC	$3 \cdot 39$	$0 \cdot 515$	0.85	3.071	3.117	0.35	$0 \cdot 34$
IIId	$3 \cdot 35{ }^{+}$	0.31	$0 \cdot 65$	3.185	$3 \cdot 121$	0.98	$0 \cdot 60$
IIIe	$3 \cdot 95$	0.685	1.06	2.975	3.013	0.76	N
IVa	$2 \cdot 60^{+}$	$0 \cdot 15$	$1 \cdot 27$	2.896	2.931	0.23	$0 \cdot 23$
$I V b$	$3 \cdot 40$	$0 \cdot 50$	$1 \cdot 16$	2.936	2.936	0.60	0.61
$I V C$	$3 \cdot 82$	0.48	1.45	$2 \cdot 839$	$2 \cdot 865$	0.43	NE
IVd	$4 \cdot 38$	0.76	1.73	$2 \cdot 762$	$2 \cdot 692$	$0 \cdot 60$	N

${ }^{\boldsymbol{a}}$ The asterisk ${ }^{+}$denotes experimental values; ${ }^{\boldsymbol{b}}$ in deriving Eq. (2) we also employed the values of $\log P$ and $\boldsymbol{R}_{\mathbf{M}}$ of the derivatives of acids I : $4-\mathrm{Br}, 2 \cdot 28,-0.03 ; 4-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}, 2 \cdot 70,0 \cdot 18 ; 4-\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}, 3 \cdot 88,0.70$ and acids $I I: 3-\mathrm{Cl}-4-\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}, 3 \cdot 6.0,0 \cdot 58$; ${ }^{c}$ values obtained from Eq. (3); ${ }^{d} \mathrm{~N}$ designates inefficient compounds, NE compounds that were not tested.
$\log P_{\text {opt }}=4 \cdot 05$. The corresponding maximum efficacy, calculated from Eq. (1), is $\log \left(1 / C^{A}\right)_{\max }=4.9$. The indicator variable I_{L} gives the length of the interlinking chain between the carbonyl and the carboxyl; it equals 2 for the acids I and $I I$, and 3 for $I I I$ and $I V^{*}$ Elongation of the chain enhances the antiaggregation efficacy, whereas the opposite is true of the arylaliphatic acids ${ }^{8,9}$.

The virtually equal statistical significance of the two equations makes it impossible to decide whether the antiaggregation activity of acids $I-I V$ is affected by bulkiness of the alkyls on the interlinking chain or by $\mathrm{p} K$ changes between the individual groups of the acids $I-I V$. The cause is a high colinearity of the two parameters with the correlation coefficient $r=0.904$. However, the two equations reveal that the presence of a methyl group on the interlinking chain diminishes the activity. From the optimum of lipophilicity and the other parameters the maximum activity can be calculated as $\log \left(1 / C^{A}\right)_{\text {max }}=3 \cdot 15$, which is nearly two orders of magnitude lower than for the arylaliphatic acids. Consequently, the carbonyl group in the interlinking chain between the carboxyl and the aromatic ring has a strongly negative effect on antiaggregation efficacy.

In Eqs (5) and (6) the lipophilicity is expressed by means of R_{M} values from thin--layer chromatography.

$$
\begin{array}{rl}
\log \left(1 / C^{\mathrm{A}}\right)=0.739 & (\pm 0.303) R_{\mathrm{M}}-1.152(\pm 0.469) R_{\mathrm{M}}^{2}+0.160(\pm 0.081) E_{\mathrm{S}}+ \\
& +0.328(\pm 0.105) I_{\mathrm{L}}+1.839(\pm 0.263), \\
n & =22, r=0.972, s=0.065, \mathrm{~F}=72.0, \\
\log \left(1 / C^{\mathrm{A}}\right)=0.736 & (\pm 0.303) R_{\mathrm{M}}-1.145(\pm 0.469) R_{\mathrm{M}}^{2}-0.697(\pm 0.354) \Delta \mathrm{p} K+ \\
& +0.427(\pm 0.118) I_{\mathrm{L}}+1.836(\pm 0.263), \tag{6}\\
n & n=22, r=0.972, s=0.066, \mathrm{~F}=72.2 .
\end{array}
$$

The anti-inflammatory efficacy was tested on two models of experimental inflammation (Table III). The results suggest that this effect depends on a number of physico-chemical and structural factors. Extension of the interlinking chain Y from 2 to 3 atoms of carbon had a negative effect, whereas attachment of a methyl group to the interlinking chain, mainly in the acids $I I$, raised the anti-inflammatory efficacy. An extraordinary enhancement of anti-inflammatory efficacy was brought about by the cyclic substituents on the aromatic ring in the 4 -cyclohexylphenyl and 4-biphenylyl derivatives.

REFERENCES

1. Tomcufcik A. S., Child R. G., Sloboda A. E.: Belg. 772804 (1971).
2. Sunshine A.: J. Clin. Pharmacol. 15, 591 (1975).
3. Mustard R. F., Packham M. A.: Drugs 9, 19 (1975).
4. Nunn B.: Thromb. Haemostasis (Stuttgart) 42, 1193 (1979).
5. Mills D. G., Philb R. B., Hirst M.: Life Sci. 14, 659 (1974).
6. Child R. G., Osterberg A. C., Sloboda A. E., Tomcufcik A. S.: J. Pharm. Sci. 66, 466 (1977).
7. Beliner E. in the book: Organic Reactions, (R. Adams, Ed.), Vol. 5, p. 229. Wiley, New York 1949.
8. Kuchař M., Rejholec V., Čepelák V. in the book: QSAR in Design of Bioactive Compounds (M. Kuchař, Ed.), p. 189. Prous, Barcelona 1985.
9. Kuchar M., Rejholec V. in the book: QSAR and Strategies in the Design of Bioactive Compounds (J. K. Seydel, Ed.), p. 345. Verlag Chemie, Weinheim 1985.
10. Leo A., Hansch C., Elkins D.: Chem. Rev. 71, 525 (1971).
11. Hansch C., Leo A.: Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York 1979.
12. Kuchař M., Rejholec V., Kraus E., Jelínková M., Miller V.: J. Chromatogr., in press.
13. Kuchař M., Rejholec V. in the book: QSAR in Toxicology and Xenobiochemistry (M. Tichý, Ed.). Elsevier, Amsterdam 1985.
14. Born W. R.: Nature 205, 678 (1965).
15. Čepelák V., Lettl A.: Vnitř. Lék. 22, 12 (1976).
16. Horáková Z., Grimová J.: Česk. Fysiol. 17, 137 (1968).
17. Hillebrccht N. P.: Arzneim.-Forsch. 9, 625 (1959).
18. Grimová J., Kuchař M., Pavliková L., Němeček O.: Česk. Farm. 29, 305 (1980).
19. Kuchař M., Brủnová B., Rejholec V., Grimová J., Němeček O.: This Journal 42, 1723 (1977).
20. Naylor R. F.: J. Chem. Soc. 1947, 1106.
21. Brown G. B. in the book: Organic Syntheses (E. C. Horning, Ed.), Coll. Vol. III p. 615, Wiley, New York 1955.
22. Cason J. in the book: Organic Syntheses (N. Rabjohn, Ed.), Coll. Vol. IV p. 630, Wiley, New York 1963.
23. Sommerville L. F., Allen C. F. H. in the book: Organic Syntheses (A. H. Blatt, Ed.), Coll. Vol. II, p. 81, Wiley, New York 1946.
24. Fieser L. F., Leffler M. T.: J. Am. Chem. Soc. 70, 3197 (1948).
25. Krausz F., Demarne H., Vaillant J., Brunaud H., Navarro J.: Arzneim.-Forsch. 24, 1360 (1974).
[^1]
[^0]: ${ }^{a}$ Purity of the esters, judged by gas chromatography (Experimental), was $97-99 \%$. The yields refer to the starting methoxyaryloxoalkanoic acid; ${ }^{b}$ isolated by crystallization from: M methanol, W water; ${ }^{c}$ isolated by column chromatography: B benzene, E ether.

[^1]: Translated by J. Salák.

